Table of ContentsMy websiteDownload PDFGitHub Repository

Vita

2019

Bachelor of Science in Physics and Computer Engineering
University of California San Diego
Summa cum laude

2019

CERN Openlab Summer Student

2019

IRIS-HEP Fellow

2019-2024

Graduate Student Researcher
University of California San Diego

2021-2022

Artificial Intelligence Fellow
Fermilab LHC Physics Center

2023-2024

Graduate Scholar
Fermilab LHC Physics Center

2024

Doctor of Philosophy in Physics
University of California San Diego

2024-

AI/Schmidt Postdoctoral Scholar Research Associate
California Institute of Technology and Fermilab

PUBLICATIONS

Note: as a member of the CMS collaboration, I have been an author on all CMS papers since 2019. The following includes only the CMS publications to which I made significant contributions during my PhD.

1.
CMS Collaboration, “Search for Nonresonant Pair Production of Highly Energetic Higgs Bosons Decaying to Bottom Quarks and Vector Bosons”, in prep, CMS-HIG-23-012 (2023).
2.
CMS Collaboration, “Search for a massive scalar resonance decaying to a light scalar and a Higgs boson in the two b quarks and four light quarks final state”, in prep, CMS-B2G-23-007 (2023).
3.
A. Li*, V. Krishnamohan*, R. Kansal, J. Duarte, R. Sen, S. Tsan, and Z. Zhang, “Induced generative adversarial particle transformers”, NeurIPS ML4PS Workshop (2023), arXiv:2312.04757.
4.
R. Kansal, C. Pareja, Z. Hao, and J. Duarte, “JetNet: A Python package for accessing open datasets and benchmarking machine learning methods in high energy physics”, JOSS 8, 5789 (2023).
5.
Z. Hao, R. Kansal, J. Duarte, and N. Chernyavskaya, “Lorentz group equivariant autoencoders”, Eur. Phys. J. C 83, 485 (2023), arXiv:2212.07347.
6.
R. Kansal, A. Li, J. Duarte, N. Chernyavskaya, M. Pierini, B. Orzari, and T. Tomei, “Evaluating generative models in high energy physics”, Phys. Rev. D 107, 076017 (2023), arXiv:2211.10295.
7.
CMS Collaboration, “Search for Nonresonant Pair Production of Highly Energetic Higgs Bosons Decaying to Bottom Quarks”, Phys. Rev. Lett. 131, 041803 (2023), arXiv:2205.06667.
8.
R. Kansal, J. Duarte, H. Su, B. Orzari, T. Tomei, M. Pierini, M. Touranakou, J.-R. Vlimant, and D. Gunopulos, “Particle Cloud Generation with Message Passing Generative Adversarial Networks”, NeurIPS (2021), arXiv:2106.11535.
9.
F. Mokhtar, R. Kansal, and J. Duarte, “Do graph neural networks learn traditional jet substructure?”, NeurIPS ML4PS Workshop (2022), arXiv:2211.09912.
10.
M. Touranakou, N. Chernyavskaya, J. Duarte, D. Gunopulos, R. Kansal, B. Orzari, M. Pierini, T. Tomei, and J.-R. Vlimant, “Particle-based fast jet simulation at the LHC with variational autoencoders”, Machine Learning: Science and Technology 3, 035003 (2022), arXiv:2203.00520.
11.
A. Apresyan, D. Diaz, J. Duarte, S. Ganguly, R. Kansal, N. Lu, C. M. Suarez, S. Mukherjee, C. Peña, B. Sheldon, and S. Xie, “Improving Di-Higgs Sensitivity at Future Colliders in Hadronic Final States with Machine Learning”, Contribution to Snowmass Summer Study (2022), arXiv:2203.07353.
12.
Y. Chen et al., “A FAIR and AI-ready Higgs boson decay dataset”, Sci. Data 9, 31 (2021), arXiv:2108.02214.
13.
F. Mokhtar, R. Kansal, D. Diaz, J. Duarte, J. Pata, M. Pierini, and J.-R. Vlimant, “Explaining machine-learned particle-flow reconstruction”, NeurIPS ML4PS Workshop (2021), arXiv:2111.12840.
14.
S. Tsan, R. Kansal, A. Aportela, D. Diaz, J. Duarte, S. Krishna, F. Mokhtar, J.-R. Vlimant, and M. Pierini, “Particle graph autoencoders and differentiable, learned energy mover’s distance”, NeurIPS ML4PS Workshop (2021), arXiv:2111.12849.
15.
B. Orzari, T. Tomei, M. Pierini, M. Touranakou, J. Duarte, R. Kansal, J.-R. Vlimant, and D. Gunopulos, “Sparse Data Generation for Particle-Based Simulation of Hadronic Jets in the LHC”, ICML LXAI Workshop (2021), arXiv:2109.15197.
16.
R. Kansal, J. Duarte, B. Orzari, T. Tomei, M. Pierini, M. Touranakou, J.-R. Vlimant, and D. Gunopulos, “Graph generative adversarial networks for sparse data generation in high energy physics”, NeurIPS ML4PS Workshop (2020), arXiv:2012.00173.