Bibliography
[1] H.R. Pagels, The Cosmic Code: Quantum Physics as the Language of Nature, Dover books on physics (Dover Publications, Incorporated, 2012) p. 295.
[2] Wikipedia contributors, Standard model — Wikipedia, the free encyclopedia, https://en.wikipedia.org/w/index.php?title=Standard_Model&oldid=1238968997 (2024), [Online; accessed 22-August-2024].
[3] David Tong, Lectures on Quantum Field Theory (University of Cambridge, 2019).
[4] David Tong, Lectures on Gauge Theory (University of Cambridge, 2018).
[5] David Tong, Lectures on the Standard Model (University of Cambridge, 2019).
[6] John McGreevy, Lectures notes on Symmetry in physics (University of California, San Diego, 2020).
[7] Frederic Schuller, Lectures on Geometrical Anatomy of Theoretical Physics (Friedrich-Alexander-Universität Erlangen-Nürnberg, 2016).
[8] Anthony Zee, Group Theory in a Nutshell for Physicists (Princeton University Press, USA, 2016).
[9] A. Zee, Quantum field theory in a nutshell (2003).
[10] Michael E. Peskin and Daniel V. Schroeder, An Introduction to quantum field theory (Addison-Wesley, Reading, USA, 1995).
[11] Gavin P. Salam, Elements of QCD for hadron colliders, in 2009 European School of High-Energy Physics (2010) arXiv:1011.5131 .
[12] Hong Liu, Relativistic Quantum Field Theory (MIT OpenCourseWare, 2023).
[13] Ricardo D. Matheus, Quantum Field Theory II (Instituto de Física Teórica, 2023).
[14] Wikipedia contributors, Baker–campbell–hausdorff formula — Wikipedia, the free encyclopedia (2023), [Online; accessed 20-August-2024].
[15] C.G.J. Jacobi, Nova methodus, aequationes differentiales partiales primi ordinis inter numerum variabilium quemcunque propositas integrandi., Journal für die reine und angewandte Mathematik 60, 1–181 (1862).
[16] Matthew D. Schwartz, Quantum Field Theory and the Standard Model (Cambridge University Press, 2014).
[17] Eugene P. Wigner, On Unitary Representations of the Inhomogeneous Lorentz Group, Annals Math. 40, 149–204 (1939).
[18] user1379857 (https://physics.stackexchange.com/users/157704/user1379857), Proof that lorentz group representation is a 4-vector, Physics Stack Exchange, uRL:https://physics.stackexchange.com/q/439080 (version: 2019-11-09), arXiv:https://physics.stackexchange.com/q/439080 .
[19] Gerhart Lüders and Bruno Zumino, Connection between spin and statistics, Phys. Rev. 110, 1450–1453 (1958).
[20] Richard P. Feynman, Robert B. Leighton, and Matthew Sands, The Feynman Lectures on Physics, Vol. 3 (Addison-Wesley, 1965) p. 4.1.
[21] Robert Foot, H. Lew, X. G. He, and Girish C. Joshi, Seesaw Neutrino Masses Induced by a Triplet of Leptons, Z. Phys. C 44, 441 (1989).
[22] J. Schechter and J. W. F. Valle, Neutrino Masses in SU(2) x U(1) Theories, Phys. Rev. D 22, 2227 (1980).
[23] Werner Rodejohann, Neutrino-less Double Beta Decay and Particle Physics, Int. J. Mod. Phys. E 20, 1833–1930 (2011), arXiv:1106.1334 .
[24] CMS Collaboration, Search for heavy Majorana neutrinos in same-sign dilepton channels in proton-proton collisions at TeV, JHEP 01, 122, arXiv:1806.10905 .
[25] Steven Weinberg, The search for unity: Notes for a history of quantum field theory, Daedalus 106, 17–35 (1977).
[26] R. J. Adler, B. Casey, and O. C. Jacob, Vacuum catastrophe: An Elementary exposition of the cosmological constant problem, Am. J. Phys. 63, 620–626 (1995).
[27] Gabriel R. Bengochea, Gabriel León, Elias Okon, and Daniel Sudarsky, Can the quantum vacuum fluctuations really solve the cosmological constant problem?, Eur. Phys. J. C 80, 18 (2020), arXiv:1906.05406 .
[28] Aneesh V. Manohar, Introduction to Effective Field Theories (Les Houches Summer School on Effective Field Theories, 2018) arXiv:1804.05863 .
[29] Gino Isidori, Felix Wilsch, and Daniel Wyler, The standard model effective field theory at work, Rev. Mod. Phys. 96, 015006 (2024), arXiv:2303.16922 .
[30] H. Lehmann, K. Symanzik, and W. Zimmermann, On the formulation of quantized field theories, Nuovo Cim. 1, 205–225 (1955).
[31] Hideki Yukawa, On the Interaction of Elementary Particles I, Proc. Phys. Math. Soc. Jap. 17, 48–57 (1935).
[32] C. M. G. Lattes, H. Muirhead, G. P. S. Occhialini, and C. F. Powell, Processes involving charged mesons, Nature 159, 694–697 (1947).
[33] G. C. Wick, The Evaluation of the Collision Matrix, Phys. Rev. 80, 268–272 (1950).
[34] ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group Collaboration, Precision electroweak measurements on the resonance, Phys. Rept. 427, 257–454 (2006), arXiv:hep-ex/0509008 .
[35] Zhong-Zhi Xianyu, A Complete Solution to Problems in “An Introduction to Quantum Field Theory” by Peskin and Schroeder (2016), [Online; accessed 29-August-2024].
[36] A.J.G. Hey and P. Walters, The New Quantum Universe (Cambridge University Press, 2003) p. 228.
[37] L.M. Brown and L. Hoddeson, The Birth of Particle Physics (Cambridge University Press, 1983) p. 56.
[38] P. A. M. Dirac, A Theory of Electrons and Protons, Proc. Roy. Soc. Lond. A 126, 360–365 (1930).
[39] Carl D. Anderson, The Apparent Existence of Easily Deflectable Positives, Science 76, 238–239 (1932).
[40] A. Denner, S. Heinemeyer, I. Puljak, D. Rebuzzi, and M. Spira, Standard Model Higgs-Boson Branching Ratios with Uncertainties, Eur. Phys. J. C 71, 1753 (2011), arXiv:1107.5909 .
[41] Julian S. Schwinger, The Theory of quantized fields. 1., Phys. Rev. 82, 914–927 (1951).
[42] Gerhart Luders, On the Equivalence of Invariance under Time Reversal and under Particle-Antiparticle Conjugation for Relativistic Field Theories, Kong. Dan. Vid. Sel. Mat. Fys. Med. 28N5, 1–17 (1954).
[43] C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson, Experimental Test of Parity Conservation in Decay, Phys. Rev. 105, 1413–1414 (1957).
[44] L. D. Landau, On the conservation laws for weak interactions, Nucl. Phys. 3, 127–131 (1957).
[45] J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay, Evidence for the Decay of the Meson, Phys. Rev. Lett. 13, 138–140 (1964).
[46] Particle Data Group Collaboration, Review of particle physics, Phys. Rev. D 110, 030001 (2024).
[47] Dan-di Wu, A Brief Introduction to the Strong CP Problem, Z. Naturforsch. A 52, 179–181 (1997).
[48] Thomas Mannel, Theory and phenomenology of CP violation, Nucl. Phys. B Proc. Suppl. 167, 115–119 (2007).
[49] Michael Dine, Willy Fischler, and Mark Srednicki, A Simple Solution to the Strong CP Problem with a Harmless Axion, Phys. Lett. B 104, 199–202 (1981).
[50] Gerard ’t Hooft, Renormalization of Massless Yang-Mills Fields, Nucl. Phys. B 33, 173–199 (1971).
[51] Gerard ’t Hooft, Renormalizable Lagrangians for Massive Yang-Mills Fields, Nucl. Phys. B 35, 167–188 (1971).
[52] Steven Weinberg, The Quantum Theory of Fields Effective or Fundamental? (CERN, 2009) [Online; accessed 10-October-2024].
[53] L. O’Raifeartaigh, The dawning of gauge theory (Princeton Univ. Press, Princeton, NJ, USA, 1997).
[54] Michael B. Green, J. H. Schwarz, and Edward Witten, SUPERSTRING THEORY. VOL. 1: INTRODUCTION, Cambridge Monographs on Mathematical Physics (1988).
[55] Chen-Ning Yang and Robert L. Mills, Conservation of Isotopic Spin and Isotopic Gauge Invariance, Phys. Rev. 96, 191–195 (1954).
[56] Wikipedia contributors, Yang–mills theory — Wikipedia, the free encyclopedia (2024), [Online; accessed 16-October-2024].
[57] Alex Dias and V. Pleitez, Grand unification and proton stability near the peccei-quinn scale, Physical Review D 70 (2004).
[58] H. David Politzer, Reliable Perturbative Results for Strong Interactions?, Phys. Rev. Lett. 30, 1346–1349 (1973).
[59] David J. Gross and Frank Wilczek, Ultraviolet Behavior of Nonabelian Gauge Theories, Phys. Rev. Lett. 30, 1343–1346 (1973).
[60] Philip W. Anderson, Plasmons, Gauge Invariance, and Mass, Phys. Rev. 130, 439–442 (1963).
[61] F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons, Phys. Rev. Lett. 13, 321–323 (1964).
[62] Peter W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev. Lett. 13, 508–509 (1964).
[63] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, Global Conservation Laws and Massless Particles, Phys. Rev. Lett. 13, 585–587 (1964).
[64] Yoichiro Nambu and G. Jona-Lasinio, Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. 1., Phys. Rev. 122, 345–358 (1961).
[65] Yoichiro Nambu and G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity. II., Phys. Rev. 124, 246–254 (1961).
[66] Sheldon L. Glashow, The renormalizability of vector meson interactions, Nucl. Phys. 10, 107–117 (1959).
[67] Abdus Salam, Weak and Electromagnetic Interactions, Conf. Proc. C 680519, 367–377 (1968).
[68] Steven Weinberg, A Model of Leptons, Phys. Rev. Lett. 19, 1264–1266 (1967).
[69] M. J. Duff and K. S. Stelle, Sir Thomas Walter Bannerman Kibble CBE, Biogr. Mems. Fell. R. Soc. 70, 225–244 (2021), arXiv:2011.13257 .
[70] S. Elitzur, Impossibility of Spontaneously Breaking Local Symmetries, Phys. Rev. D 12, 3978–3982 (1975).
[71] Latham Boyle, Standard model of particle physics–most complete diagram (2024), [Online; accessed 25-September-2024].
[72] Diogo Boito, Consequences of the renormalization group for perturbative quantum chromodynamics, Nature Phys. 19, 1533–1535 (2023).
[73] F. Bissey, F-G. Cao, A. R. Kitson, A. I. Signal, D. B. Leinweber, B. G. Lasscock, and A. G. Williams, Gluon flux-tube distribution and linear confinement in baryons, Phys. Rev. D 76, 114512 (2007), arXiv:hep-lat/0606016 .
[74] Derek B. Leinweber, Visualizations of quantum chromodynamics (2004), [Online; accessed 25-October-2024].
[75] Werner Heisenberg, Über den bau der atomkerne. i, Zeitschrift für Physik 77, 1–11 (1932).
[76] Eugene P. Wigner, On the consequences of the symmetry of the nuclear hamiltonian on the spectroscopy of nuclei, Physical Review 51, 106–119 (1937).
[77] Jun John Sakurai, Invariance Principles and Elementary Particles (Princeton University Press, 2015).
[78] Murray Gell-Mann, The Eightfold Way: A Theory of strong interaction symmetry (1961).
[79] Yuval Ne’eman, Derivation of strong interactions from a gauge invariance, Nucl. Phys. 26, 222–229 (1961).
[80] Murray Gell-Mann, A Schematic Model of Baryons and Mesons, Phys. Lett. 8, 214–215 (1964).
[81] George Zweig, An SU(3) model for strong interaction symmetry and its breaking. 1., Phys. Rev. Lett. 12, 132–135 (1964).
[82] Wikipedia contributors, Isospin — Wikipedia, the free encyclopedia (2024), [Online; accessed 26-October-2024].
[83] S. L. Glashow, J. Iliopoulos, and L. Maiani, Weak Interactions with Lepton-Hadron Symmetry, Phys. Rev. D 2, 1285–1292 (1970).
[84] SLAC-SP-017 Collaboration, Discovery of a Narrow Resonance in Annihilation, Phys. Rev. Lett. 33, 1406–1408 (1974).
[85] E598 Collaboration, Experimental Observation of a Heavy Particle , Phys. Rev. Lett. 33, 1404–1406 (1974).
[86] Makoto Kobayashi and Toshihide Maskawa, CP Violation in the Renormalizable Theory of Weak Interaction, Prog. Theor. Phys. 49, 652–657 (1973).
[87] Martin L. Perl et al., Evidence for Anomalous Lepton Production in e+ - e- Annihilation, Phys. Rev. Lett. 35, 1489–1492 (1975).
[88] E288 Collaboration, Observation of a Dimuon Resonance at 9.5-GeV in 400-GeV Proton-Nucleus Collisions, Phys. Rev. Lett. 39, 252–255 (1977).
[89] CDF Collaboration, Observation of top quark production in collisions, Phys. Rev. Lett. 74, 2626–2631 (1995), arXiv:hep-ex/9503002 .
[90] D0 Collaboration, Observation of the top quark, Phys. Rev. Lett. 74, 2632–2637 (1995), arXiv:hep-ex/9503003 .
[91] John C. Collins, Davison E. Soper, and George F. Sterman, Factorization of Hard Processes in QCD, Adv. Ser. Direct. High Energy Phys. 5, 1–91 (1989), arXiv:hep-ph/0409313 .
[92] Torsten Pfoh, LHC Theory Lectures (2012), [Online; accessed 29-October-2024].
[93] Joey Huston, Introduction to QCD from an LHC perspective (2018), [Online; accessed 29-October-2024].
[94] Wikipedia contributors, Deep inelastic scattering — Wikipedia, the free encyclopedia (2024), [Online; accessed 28-October-2024].
[95] ATLAS Collaboration, When protons collide (2024), [Online; accessed 28-October-2024].
[96] M. Krasny, F. Dydak, F. Fayette, W. Płaczek, and Andrzej Siodmok, m w10 mev/ c 2 at the lhc: a forlorn hope?, European Physical Journal C 69, 379–397 (2010).
[97] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07, 079, arXiv:1405.0301 .
[98] Katharina Danziger, Stefan Höche, and Frank Siegert, Reducing negative weights in Monte Carlo event generation with Sherpa, arXiv:2110.15211 (2021).
[99] Charalampos Anastasiou, Lance J. Dixon, Kirill Melnikov, and Frank Petriello, High precision QCD at hadron colliders: Electroweak gauge boson rapidity distributions at NNLO, Phys. Rev. D 69, 094008 (2004), arXiv:hep-ph/0312266 .
[100] Monika Kollar, Top-Quark and Top-Squark Production at Hadron Colliders at Electroweak NLO (Technische Universitat Munchen, 2007).
[101] H1 Collaboration, Measurement of DIS cross section at HERA, Braz. J. Phys. 37, 793–797 (2007).
[102] Henning Kirschenmann, Jet Energy Scale Corrections and their Impact on Measurements of the Top-Quark Mass at CMS, Ph.D. thesis, U. Hamburg, Dept. Phys. (2014).
[103] L. A. T. Bauerdick et al., Event display for the visualization of CMS events, J. Phys. Conf. Ser. 331, 072039 (2011).
[104] CMS Collaboration, Search for highly energetic double Higgs boson production in the two bottom quark and two vector boson all-hadronic final state (2024).
[105] Torbjörn Sjöstrand, Stefan Ask, Jesper R. Christiansen, Richard Corke, Nishita Desai, Philip Ilten, Stephen Mrenna, Stefan Prestel, Christine O. Rasmussen, and Peter Z. Skands, An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191, 159–177 (2015), arXiv:1410.3012 .
[106] G. Corcella, I. G. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P. Richardson, M. H. Seymour, and B. R. Webber, HERWIG 6: An Event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), JHEP 01, 010, arXiv:hep-ph/0011363 .
[107] Sherpa Collaboration, Event Generation with Sherpa 2.2, SciPost Phys. 7, 034 (2019), arXiv:1905.09127 .
[108] Johan Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53, 473–500 (2008), arXiv:0706.2569 .
[109] Stefan Höche, Introduction to parton-shower event generators, in Theoretical Advanced Study Institute in Elementary Particle Physics: Journeys Through the Precision Frontier: Amplitudes for Colliders (2015) pp. 235–295, arXiv:1411.4085 .
[110] Stefan Höche, Introduction to Parton Showers (School and Workshop on pQCD, West Lake, 2018) [Online; accessed 29-October-2024].
[111] Bo Andersson, G. Gustafson, G. Ingelman, and T. Sjostrand, Parton Fragmentation and String Dynamics, Phys. Rept. 97, 31–145 (1983).
[112] Stefan Prestel, The Lund Hadronization Model (NuSTEC workshop, Gran Sasso Science Institute, 2018) [Online; accessed 29-October-2024].
[113] E. Fermi, An attempt of a theory of beta radiation. 1., Z. Phys. 88, 161–177 (1934).
[114] Gargamelle Neutrino Collaboration, Observation of Neutrino Like Interactions Without Muon Or Electron in the Gargamelle Neutrino Experiment, Phys. Lett. B 46, 138–140 (1973).
[115] UA1 Collaboration, Experimental Observation of Isolated Large Transverse Energy Electrons with Associated Missing Energy at GeV, Phys. Lett. B 122, 103–116 (1983).
[116] UA1 Collaboration, Experimental Observation of Lepton Pairs of Invariant Mass Around 95-GeV/c**2 at the CERN SPS Collider, Phys. Lett. B 126, 398–410 (1983).
[117] UA2 Collaboration, Observation of Single Isolated Electrons of High Transverse Momentum in Events with Missing Transverse Energy at the CERN anti-p p Collider, Phys. Lett. B 122, 476–485 (1983).
[118] UA2 Collaboration, Evidence for at the CERN Collider, Phys. Lett. B 129, 130–140 (1983).
[119] CMS Collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716, 30–61 (2012), arXiv:1207.7235 .
[120] ATLAS Collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716, 1–29 (2012), arXiv:1207.7214 .
[121] Paul A. M. Dirac, New basis for cosmology, Proc. Roy. Soc. Lond. A 165, 199–208 (1938).
[122] M. Gell-Mann, The interpretation of the new particles as displaced charge multiplets, Nuovo Cim. 4, 848–866 (1956).
[123] J. Wess and J. Bagger, Supersymmetry and supergravity (Princeton University Press, Princeton, NJ, USA, 1992).
[124] Nathaniel Craig, Jamison Galloway, and Scott Thomas, Searching for Signs of the Second Higgs Doublet, arXiv:1305.2424 (2013).
[125] Tania Robens, Tim Stefaniak, and Jonas Wittbrodt, Two-real-scalar-singlet extension of the SM: LHC phenomenology and benchmark scenarios, Eur. Phys. J. C 80, 151 (2020), arXiv:1908.08554 .
[126] Nathaniel Craig, Naturalness and New Approaches to the Hierarchy Problem (Prospects in Theoretical Physics, Institute for Advanced Study, 2017) [Online; accessed 30-October-2024].
[127] Ziro Maki, Masami Nakagawa, and Shoichi Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28, 870–880 (1962).